
Appendix of ”Maximum Likelihood Algorithm
for Spatial Generalized Linear Mixed Models
without Numerical Evaluations of Intractable

Integrals”

Tonglin Zhang *

A MLE in SLMMs

The maximization step in our method relies on the ML algorithm for the SLMM given by

z = Xβ + γ + ε, (19)

where z ∈ Rn is a response vector, X ∈ Rn×p is a design matrix, β ∈ Rp is a parameter vector for

fixed effects, γ ∼ N (0,Σω) is an n-dimensional vector for random effects, ω ∈ Rq is a parameter

vector for variance components in the random effects, ε ∼ N (0,W−1) is an n-dimensional vector

for random errors, and W is a known diagonal matrix for weights. We assume that γ and ε are

independent. By integrating γ out in the h-likelihood function of (19), we obtain the log-likelihood

function of the model as

`(β,ω) = −n
2

log(2π)− 1

2
log[det(Vω)]− 1

2
(z −Xβ)>V−1ω (z −Xβ) (20)

where Vω = Σω + W−1.

We propose a profile likelihood approach to calculate the MLEs of β and ω. Given ω, the

conditional MLE of β is

β̂ω = (X>V−1ω X)−1X>V−1ω z. (21)

Put this into (20). We obtain the profile log-likelihood function of the model as

`p(ω) = −n
2

log(2π)− 1

2
log[det(Vω)]− 1

2
z>Mωz, (22)
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where Mω = V−1ω −V−1ω X(X>V−1ω X)−1X>V−1ω .

We devise a Newton-Raphson algorithm to compute the maximizer of `p(ω). To implement

the Newton-Raphson algorithm, we need to calculate the first-order and the second-order partial

derivatives of `p(ω) with respect to the components of ω. The derivation is straightforward. We

only display the results below.

The first-order partial derivative of `p(ω) is

∂`p(ω)

∂ωj

= −1

2
tr

(
V−1ω

∂Vω

∂ωj

)
+

1

2
z>Mω

∂Vω

∂ωj

Mωz, (23)

where ωj is the jth component of ω. The second-order partial derivative of `p(ω) is

∂2`p(ω)

∂ωj1∂ωj2

=
1

2
tr

(
V−1ω

∂2Vω

∂ωj1∂ωj2

)
− 1

2
tr

(
V−1ω

∂Vω

∂ωj1

V−1ω
∂Vω

∂ωj2

)
+

1

2
z>Mω

∂2Vω

∂ωj1∂ωj2

Mωz

− 1

2
z>Mω

∂Vω

∂ωj1

Mω
∂Vω

∂ωj2

Mωz −
1

2
z>Mω

∂Vω

∂ωj2

Mω
∂Vω

∂ωj1

Mωz.

(24)

The MLE of ω, denoted by ω̂, can be efficiently derived by the Newton-Raphson algorithm.

After ω̂ is derived, the MLE of β can be quickly derived by β̂ = β̂ω̂. The computation of the

first and the second order derivatives does not need any numerical evaluations of HDIIs because

only partial derivatives of Vω are needed. Because q is usually small, the indirect usage by the

profile likelihood approach for the MLEs is more efficient than the direct usage by the likelihood

approach. The two approaches provide identical results in parametric models (Murphy and van der

Vaart, 2000). Therefore, we recommend using the profile likelihood approach in the computation

of the MLEs of β and ω.

B Prediction of Random Effects

By (19), we obtain the joint distribution of z and γ as z

γ

 ∼ N
 Xβ

0

 ,

 Vω Σω

Σω Σω

 . (25)

If β and ω are known, then we predict γ by

γ̂βω = E(γ|z) = ΣωV−1ω (z −Xβ). (26)

If β and ω are unknown, then we replace them by β̂ and ω̂, respectively, in (26), leading to a

similar formulation for γ̂β̂ω̂. It can predict γ under (19) with unknown β and ω.
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C Fisher Information

The Fisher information is the expected value of the negative Hessian matrix of `(β,ω) divided by

n. It can be straightforwardly derived by (20) under (19). The results are

I(β,ω) =

 Iββ Iβω

Iωβ Iωω

 =
1

n

 X>V−1ω X 0

0 1
2
tr
(
V−1ω

∂Vω
∂ωj1

V−1ω
∂Vω
∂ωj2

)  , (27)

implying that
√
n(β̂ − β0)  N (0, I−1β0β0

) and
√
n(ω̂ − ω0)  N (0, I−1ω0ω0

) as n → ∞, where β0

and ω0 are true parameter vectors.

D Proofs

Proof of Theorem 1. By `h(β,ω) = log[Lh(β,ω)] with Lh(β,ω), we obtain the h-loglikelihood

function of the SGLMM as

`h(β,ω) = y ∗ θ − b(θ) + c(y)− n

2
log(2π)− 1

2
log[det(Σω)]− 1

2
γ>Σ−1ω γ.

Based on the working SLMM

zβ̃γ̃ = Xβ + γ + ε (28)

where γ ∼ N (0,Σω), ε ∼ N (0,Wβ̃,γ̃), zβ̃γ̃ = Xβ̃ + γ̃ = (z1β̃γ , . . . , znβ̃γ)>, ziβ̃γ̃ = x>i β̃ + γ̃i,

Wβ̃γ̃ = diag(w1β̃γ̃ , . . . , wnβ̃γ̃), w−1
iβ̃γ̃

= (∂η̃i/∂µ̃i)
2b′′(θ̃i), µ̃i = g−1(η̃i), and θ̃i = η̃i = x>i β̃ + γ̃i, we

obtain the working h-likelihood function as

Lh,β̃γ̃(β,ω) =(2π)−n[det(Wβ̃γ̃)]
1
2 [det(Σω)]−

1
2

× exp

{
−1

2
(z>
β̃γ̃
−Xβ − γ)>Wβ̃γ̃(zβ̃γ̃ −Xβ − γ)− 1

2
γ>Σ−1ω γ

}
.

Taking the logarithm of the above, we obtain the working h-loglikelihood function as

`h,β̃γ̃(β,ω) =− n log(2π) +
1

2
log[det(Wβ̃γ̃)]− 1

2
log[det(Σω)]−

1
2

− 1

2
(z>
β̃γ̃
−Xβ − γ)>Wβ̃γ̃(zβ̃γ̃ −Xβ − γ)− 1

2
γ>Σ−1ω γ.

It is enough to prove that the maximizers of `h(β,ω) and `h,β̃γ̃(β,ω) are identical when β̃ = β̂h,γ

and γ̃ = γ, because (β̂>h,γ , ω̂
>
h,γ)> = argminβ,ω `h(β,ω) and (β̂>

h,β̃γ̃
, ω̂>

h,β̃γ̃
)> = argminβ,ω ˜̀

h,β̃γ̃(β,ω).
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We first compute the score functions of `h(β,ω) and `h,β̃γ̃(β,ω). The partial derivative of

`h(β,ω) with respect to βj for every j ∈ {1, · · · , p} is

∂`h(β,ω)

∂βj
= x̃>j (y − µ), (29)

where x̃j is the jth column of X. The partial derivative of `h(β,ω) with respect to ωj for every

j ∈ {1, · · · , q} is
∂`h(β,ω)

∂ωj

= −1

2
tr

(
Σ−1ω

∂Σω

∂ωj

)
+

1

2
γ>Σ−1ω

∂Σω

∂ωj

Σ−1ω γ. (30)

The score function of `h(β,ω) is

˙̀
h(β,ω) =

(
∂`h(β,ω)

∂β1
, · · · , ∂`h(β,ω)

∂βp
,
∂`h(β,ω)

∂ω1

, · · · , ∂`h(β,ω)

∂ωq

)>
, (31)

indicating that

˙̀
h(β̂h,γ , ω̂h,γ) = 0. (32)

The partial derivatives of `h,β̃γ̃(β,ω) with respect to βj for all j ∈ {1, · · · , p} is

∂`h,β̃γ̃(β,ω)

∂βj
= x̃>j Wβ̃γ̃(zβ̃γ̃ −Xβ − γ). (33)

The partial derivatives of `h,β̃γ̃(β,ω) with respect to ωj for all j ∈ {1, · · · , q} is

∂`h,β̃γ̃(β,ω)

∂ωj

= −1

2
tr

(
Σ−1ω

∂Σω

∂ωj

)
+

1

2
γ>Σ−1ω

∂Σω

∂ωj

Σ−1ω γ. (34)

The score function of `h(β,ω) is

˙̀
h,β̃γ̃(β,ω) =

(
∂`h,β̃γ̃(β,ω)

∂β1
, · · · ,

∂`h,β̃γ̃(β,ω)

∂βp
,
∂`h,β̃γ̃(β,ω)

∂ω1

, · · · ,
∂`h,β̃γ̃(β,ω)

∂ωq

)>
, (35)

indicating that

˙̀
h,β̃γ̃(β̂h,β̃γ̃ , ω̂h,β̃γ̃) = 0 (36)

for any β̃ and γ̃.

We next compare (29)–(36) for the relationship between β̂h,γ and β̂h,β̃γ̃ , and that between

ω̂h,γ and ω̂h,β̃γ̃ under (28) when β̃ = β̂h,γ and γ̃ = γ. We quickly obtain ∂`h(β,ω)/∂ωj =

∂`h,β̃γ̃(β,ω)/∂ωj by (30) and (34). Therefore, we only need to compare (29) and (33). By ηi =

x>i β + γi and ∂µi/∂ηi = ∂µi/∂θi = b′′(θi) = V(yi), we obtain w−1i,βγ = (∂ηi/∂µi)
2b′′(θi) = ∂ηi/∂µi.
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Thus, (29) is equivalent to

∂`h(β,ω)

∂βj
=

n∑
i=1

xij(yi − µi)

=
n∑

i=1

xij(
∂ηi
∂µi

)−1[(yi − µi)
∂ηi
∂µi

]

=
n∑

i=1

xij(
∂ηi
∂µi

)−1[ηi + (yi − µi)
∂ηi
∂µi

− x>i β − γi]

=
n∑

i=1

xijwi,βγ(zi,βγ − x>i β − γi).

(37)

We obtain
∂`h(β,ω)

∂βj

∣∣∣∣
β=β̂h,γ ,ω=ω̂h,γ

=
n∑

i=1

xijwi,β̂h,γγ
(zi,β̂h,γγ

− x̂>i β̂h,γ − γi). (38)

We equivalently express (33) as

∂`h,β̃γ̃(β,ω)

∂βj
=

n∑
i=1

xijwi,β̃γ̃(zi,β̃γ̃ − x
>
i β − γi) (39)

and obtain
∂`h,β̃γ̃(β,ω)

∂βj

∣∣∣∣
β=β̂h,β̃γ̃ ,γ=ω̂h,β̃γ̃

=
n∑

i=1

xijwi,β̃γ̃(zi,β̃γ̃ − x
>
i β̂β̃γ̃ − γi). (40)

We then compare (39) and (40) for the solutions of the score functions, specified by (32) and (35),

respectively. We find that the solutions are identical when β̃ = β̂h,γ and γ̃ = γ. We then draw

the conclusion. ♦

Proof of Theorem 2. The objective function given by the E-step of the EM algorithm (Little

and Rubin, 2002, P. 168) is
∫

log fh,βω(y,γ)fc,βω(γ|y)dγ. Note that fc,βω(γ|y) is a PDF. The

value of the integral is between the minimum and the maximum of log fh,βω(y,γ) as a function of

γ. Because log fh,βω(y,γ) is continuous in γ, there exists γ̃ satisfying the condition, which means

existence. The M-step is carried out by the h-likelihood by replacing β with γ̃. By Theorem 1, the

solutions are identical to those given by (11). For normal responses, the EM algorithm provides

identical solutions to those given by the likelihood method after treating missing values (Little

and Rubin, 2002, P. 172). Thus, the final solutions are identical to those given by (13). ♦

Proof of Theorem 3. Both `h,β̃γ̃(β,ω) and `β̃γ̃(β,ω) are the true log-likelihood functions.

They satisfy the Shannon-Kolmogorov Information inequality (Ferguson, 1996, P. 113). Because

y follows an exponential family distribution and the prior distribution for γ is normal, all the reg-

ularity conditions for consistency and asymptotic normality (e.g., the conditions given by Chapter
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17 in Ferguson (1996) or Section 5.2 in van der Vaart (1998)) are satisfied. Thus, β̂β̃γ̃ and β̂h,β̃γ̃ are
√
n-consistent estimators of β, and ω̂β̃γ̃ and ω̂h,β̃γ̃ are

√
n-consistent estimators of ω under (10),

implying the conclusion. ♦

Proof of Theorem 4. Because y follows an exponential family distribution, the usual regu-

larity conditions for consistency of the MLEs given by Theorem 17 of Ferguson (1996) are satisfied.

To apply the method in the proof of Theorem 17 of Ferguson (1996), we need the Lebesgue Dom-

inate Theorem and an enhanced version of the strong low of large numbers. They are assumed by

(ii) and (iii), respectively. Then, we can apply the method in the proof of Theorem 17 of Ferguson

(1996), leading to β(t) − β(t)
h

P→ 0 and ω(t) − ω(t)
h

P→ 0 for any fixed t as n → ∞. We derive the

final conclusion by adopting the same method for the asymptotic normality of MLEs used in the

proof of Theorem 18 of Ferguson (1996). ♦

Proof of Corollary 1. Asymptotic normality is implied by the Lyapunov condition with

consistency. Note that β̂PM and ω̂PM are the MLEs of β and ω with unobserved γ, and ω̂h

and ω̂h are those with observed γ. We can use the formulation for the relationship between

conditional and unconditional variance-covariance, i.e., V(β̂PM) = E[V(β̂PM |γ)] + V[E(β̂PM |γ)]

and V(ω̂PM) = E[V(ω̂PM |γ)] + V[E(ω̂PM |γ)]. Then, we obtain the Fisher Information given by

Appendix C. ♦

Proof of Corollary 2. By the Cramér-Rao Lower Bound Theorem (e.g., Ferguson (1996) Page

129), the variance-covariance matrix provided by Corollary 1 is identical to the variance-covariance

matrix provided by the Fisher Information because it is optimized according to the connection

between the conditional and unconditional variance-covariance matrices. Note that none of β̂,

ω̂, β̂PM , and β̂PM depend on γ. Using the standard Talyor expansion for the derivation of the

asymptotics of the MLE with Corollary 1 and the properties of the Linderberg-Feller condition,

we have

0 =∇`β̂PM ω̂PM
(β̂PM , ω̂PM)

=∇`β0ω0(β0,ω0) +∇2`β0ω0(β0,ω0)

 β̂PM

ω̂PM

−
 β0

ω0

+ op(
√
n)

and

0 =∇`(β̂, ω̂)

=∇`β0ω0(β0,ω0) +∇2`β0ω0(β0,ω0)

 β̂

ω̂

−
 β0

ω0

+ op(
√
n, )
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where β0 and ω0 are the true parameter vectors. Take the difference of the above, we have

{
1

n
∇2`β0ω0(β0,ω0)

}√n
 β̂PM

ω̂PM

−
 β̂

ω̂

+ op(1) = 0.

Note that −n−1∇2`β0ω0(β0,ω0) is the Fisher Information matrix. It is positive definite. We obtain

√
n

 β̂PM

ω̂PM

−
 β̂

ω̂

 P→ 0

as n→∞, leading to the conclusion. ♦
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